

BSc. Honours with Physics		
CBCS (Core Course)		
	Semester-I	
PHYSICS-C-I: MATHEMATICAL PHYSICS – I Physics-C- II: MECHANICS	At the completion of this course, a student with the knowledge and understanding of these mathematical methods can solve problems in several elementary branches of Physics like mechanics, electromagnetic theory, statistical Physics, thermal Physics etc. The student can also learn computer programming and numerical analysis and know its role in solving problems in Physics. At the completion of this course, a student will be able to understand about the basic concepts of mechanics by simultaneous study of linear and rotational dynamics. A detail understanding of	
	inertial and non-inertial frame and as well as the peculiar concepts of the special theory of relativity can be realized in this course. Analysis of harmonic oscillator system and motion of planetary system as central force problem can be also learnt within the realm of the course.	
	Semester-II	
PHYSICS–C III: ELECTRICITY AND MAGNETISM	At the completion of this course, a student will get basic knowledge of electricity and magnetism as well as the fundamental laws of electric and magnetic field. The basic principle of the electrical circuit (AC) circuit and electrical networking is thoroughly discussed in the course.	
PHYSICS–C IV: WAVES AND OPTICS	At the completion of this course, a student will be able to learn various phenomenon related to light such as diffraction, interference, polarization etc. al. The properties of longitudinal and transverse wave as well as the characteristic of central wave equation is also in this course. Students will obtain knowledge about various light experiments like Newtons Ring, Llyod Mirror within the realm of the course.	
Semester-III		
PHYSICS-C-V: MATHEMATICAL PHYSICS – II	At the completion of this course, a student will be able touse diverse mathematical techniques to formulate and solve a problem in basic Physics.Special emphasis on the series solution method using Frobenius techniques as well as Legendre, Hermite, Bessel equation is also given in	

	this course. In the mathematical lab section, students
	will learn the use of Scilab as well as Mathematica to
DHYSICS C VI: THEPMAL	At the completion of this course a student will be
PHYSICS C-VI. IIIERWAL	able to understand the classical laws that govern the
	field of thermodynamics and use the laws to study
	the central theme of thermodynamics-the heat
	engine. With the understanding of the concept of
	entropy and various other thermodynamic potential.
	students can probe questions in varied fields of
	Physics, chemistry and biology based on principles
	of Thermal Physics.
PHYSICS-C-VII: DIGITAL	At the completion of this course, a student will
SYSTEMS AND APPLICATIONS	properly understand the key ideas behind digital
	electronics. With the study of fundamental gates,
	Flip-flops, Counter, Registers, Multivibrator,
	students will get to know how a complex digital
	system microprocessor or RAM or ROM operates.
	Semester-IV
PHYSICS-C-VIII:	At the completion of this course, a student will be
MATHEMATICAL PHYSICS-III	able to
	1. Write a problem in Physics (slightly more advanced than those in Mathematical Physics L and
	II) in the language of mathematics
	2 Identify a range of diverse mathematical
	techniques/ideas to formulate simplify and solve
	some problems in Physics.
	3. Analyse some of the useful mathematical ideas
	and techniques.
	4. Apply the knowledge and understanding of these
	mathematical methods to solve problems in several
	fundamental topics in Physics.
	5. Construct a problem in Physics computationally
	and use simulations to design an experiment.
PHYSICS-C-IX: ELEMENTS OF	At the completion of this course, a student will be
MODERN PHYSICS	able understand the theoretical basis that
	revolutionized the 20 th century Physics- Quantum
	Mechanics. The understanding of the concepts
	Plack Pody rediction do Droglio's ways resticts
	duality Schrodinger Wave Equation Unisonberg
	uncertainty principle and his formulation of matrix
	mechanics Born's interpretation of wave function
	can develop insight into the key principles and
	applications of Nuclear Physics Atomic Physics and

	Condensed matter physics.
PHYSICS-C-X: ANALOG	At the completion of this course, a student will be
SYSTEMS AND APPLICATIONS	able to familiarize themselves about the basics of PN
	junction diode, bipolar transistors, operational
	amplifiers and oscillators. The students will be able
	to develop knowledge about analog to digital and
	digital to analog conversion techniques within the
	realm of the course.
	SEM V
PHYSICS-C-XI: QUANTUM	At the completion of this course, a student will be
MECHANICS AND	able to understand the fundamental concepts of
APPLICATIONS	quantum mechanics, such as Planck theory of Black
	Body radiation, de Broglie's wave particle duality,
	Schrodinger Wave Equation, Heisenberg uncertainty
	principle and his formulation of matrix mechanics,
	Born's interpretation of wave function in its concrete
	mathematical form. The applications of quantum
	mechanics in solving physical problems arealso
	presented in this course.
PHYSICS-C-XII: SOLID STATE	At the completion of this course, a student will be
PHYSICS	able to familiarize with the structure of solid as well
	as the electronic and lattice vibration dependent
	behavior of solids. Various laboratory experiments
	associated with the course helps the students to learn
	the basic concepts in practical conditions
PHYSICS DSE -I: CLASSICAL	After completing the course, a student will be able to
DYNAMICS	fundamental ideas of classical mechanics and the
	advantages of its formulation over
	Newtonianmechanics With the understanding of the
	Langrangian and Hamiltonian formulation the
	mechanics of central force motion as well as small
	amplitude system is explored within the realm of the
	course. The students can also observe the peculiar
	phenomena when transformed from Newtonian
	relativity to special relativity and to understand the
	concept of space-time.
PHYSICS DSE II: PHYSICS OF	After completing this course, a student will be able
DEVICES AND INSTRUMENTS	familiarize themselves with the following electronic
	devices and instruments:
	1. UJT, FET, MOSFET, CMOS etc. and
	itsapplication to different electronic circuits.
	2. Rectifiers, passive and active filters.
	multivibrators, Phase Locked Loop etc.
	Different IC fabrication techniques as well as the
	standards of digital data communication can also be

	learnt in this course.	
SEM VI		
PHYSICS-C-XIII: ELECTROMAGNETIC THEORY	At the completion of this course, a student will have a complete understanding of Maxwell's theory of Electromagnetic radiation and its application to explain the properties of the electromagnetic wave and its interaction with matter. Students will also be familiarized with the principles and processes related to polarization, interference, and diffraction along with their applications to the development of wave- guide and optical fibres.	
PHYSICS-C-XIV: STATISTICAL MECHANICS	At the completion of this course, a student will understand the dynamical behavior of the microscopic constituents of a thermodynamic system. The students can apply the laws of statistics to a system having many degrees of freedom. All the basic laws of thermodynamics along with the laws of entropy can be understood in its microscopic detail.	
PHYSICS-DSE 3: NUCLEAR AND PARTICLE PHYSICS	After the end of the course, a student will be able to understand various concepts in Nuclear Physics and its connections with other domains of Physics, particularly Quantum Mechanics, Mathematical Physics and Particle Physics.The various aspects of nuclear detectors and use of nuclear energy to the benefits of the human civilization can be learnt within the realm of the course.	
PHYSICS-DSE 4: EXPERIMENTAL TECHNIQUES	After completing this course, a student will be able to enhance the knowledge of some measurement techniques and data and error analysis technique. The students will be familiarized with the working principle, efficiency, and applications of Transducers & industrial instrumentation in this course. A detail description of the Vacuum system and its accessories such as gauges, pump etc., is also given in this course.	
PHYSICS-GE-1: MECHANICS (SEMESTER I, GENERIC ELECTIVE)	At the completion of this course, a student will be able to understand about the basic concepts of mechanics by simultaneous study of linear and rotational dynamics. A detail understanding of inertial and non-inertial frame and as well as the peculiar concepts of the special theory of relativity can be realized in this course. Analysis of harmonic oscillator system and motion of planetary system as central force problem can be also learnt within the	

	realm of the course.
PHYSICS-GE-2 : ELECTRICITY	At the completion of this course, a student will get
AND MAGNETISM (SEMESTER	basic knowledge of electricity and magnetism as
II, GENERIC ELECTIVE)	well as the fundamental laws of electric and
	magnetic field. The basic principle of the electrical
	circuit (AC) circuit and electrical networking is
	thoroughly discussed in the course.
PHYSICS-GE-3: THERMAL PHYSICS AND STATISTICAL MECHANICS (SEMESTER III, GENERIC ELECTIVE)	At the completion of this course, a student will understand the dynamical behavior of themicroscopic constituents of a thermodynamic system. The students can apply the laws of statistics to a system having many degrees of freedom. All the basic laws of thermodynamics along with the laws of entropy can be understood in its microscopic detail.
PHYSICS-GE-4: WAVES AND	At the completion of this course, a student will be
OPTICS (SEMESTER IV,	able to learn various phenomenon related to light
GENERIC ELECTIVE)	such as diffraction, interference, polarization etc. al.
	The properties of longitudinal and transverse wave
	as well as the characteristic of central wave equation
	is also in this course. Students will obtain knowledge
	about various light experiments like Newtons Ring,
	Llyod Mirror within the realm of the course.