

B. Sc Mathematics			
	CBCS (Honours)		
	Semester I		
Course Name	Course Outcome		
C-1: Calculus	 After going through this course, the students will be able to Evaluate the behaviours and graphs of functions. Use basic integration techniques to calculate area and volume. Find higher order derivatives of functions, maximum, minimum etc. Sketch parametric curves (e.g. cycloid, epicycloids etc). 		
C-2: Algebra	 After going through this course, the students will be able to Demonstrate the concepts and methods of classical algebra and preliminaries of number theory. Develop the concept of linear transformation and its matrix representation. Demonstratethe understanding of the concepts of vector space and dimensions. Understand the problems that apply algebra to Chemistry, Economics, Computer science and Engineering. 		
GE-1: Differential Calculus	After going through the course Students will be able to • Understand the concepts of limit and continuity. • Find higher order derivates of various kinds of function. •Trace parametric curves and polar curves. • To find tangent normal, curvature, asymptotes etc. • Expand functions using Taylor's series, Maclaurin's series.		
	Semester II		
C-3: Real Analysis	 After going through this course, the students will be able to Distinguish the various properties of real number. Understand the concepts of different types of sequence and Series over R. Use various tests for convergence to find if the given sequence or series is converging or diverging. 		
C-4: Differential Equations	 After going through this course, the students will be able to Apply the techniques in solving various ordinary differential equations. Solve various mathematical models used in real life problemsby applying these techniques. Plot second and third order solution family of differential equation. 		

GE-2: Differential Equations	After going through this course, the students will be able to • Solve first and higher order linear differential equations. •Understand the concepts of linear and non-linear PDE. • Classify second order PDE into elliptic, parabolic and hyperbolic through illustrations.	
· · · · · · · · · · · · · · · · · · ·		
C 7 TT CD 1	Semester III	
C-5: Theory of Real	After going through this course, the students will be able	
Functions	Describe and elaborate limit continuity and differentiability	
	• Describe and elaborate limit, continuity, and differentiability of real valued and/or real functions.	
	Understand various introductory theorems associated with	
	real functions.	
	• Expand functions using Taylor's series and Maclaurin's	
	series expansions.	
C-6: Group Theory I	After going through this course, the students will be able to	
	• Demonstrate the understanding of binary operations and	
	algebraic structure forming a group.	
	• Discuss subgroups, cyclic subgroups, abelian subgroups etc.	
	• Understand the concepts and standard properties of group homomorphisms.	
.C-7: PDE and Systems of	After going through this course, the students will be able to	
ODE	• Understand the basic concepts of PDE and solve using various techniques (Lagrange's method, Charpit's method,	
	Jacobi's method) • Classify second order linear PDE, reduce itto canonical	
	form and hence solve it.	
	Solve various physical problems (Vibrating String, Heat	
	conduction) .Solve IVPs using numerical methods.	
	• Solve system of linear ODEs.	
GE-3: Real Analysis	After going through this course, the students will be able to	
	• Distinguish the various properties of real number.	
	• Understand the concepts of different types of sequence and	
	Series and their convergence.	
	• Demonstrate Power series and evaluate its radius of	
	convergence.	
Semester IV		
C-8: Numerical Methods	After going through this course, the students will be able to • Find the roots of polynomial and transcendental equations.	

	 Solve system of linear equations using iterative methods. Construct a polynomial for a given set of data using interpolation. Evaluate integrals using numerical integration formulae. Solve initial value problems using single and multi-step methods.
C-9: Riemann Integration and Series of Functions	 After going through this course, the students will be able to Discuss Riemann integration and its conditions of integrability. Understand and demonstrate the continuity, differntiability and integrability of the limit function of a sequence and series of funcitions with the use of theorems on it. Differentiate and integrate power series, find the radius of convergence.
C-10: Ring Theory and Linear Algebra I	After going through this course, the students will be able to • Demonstrate the understanding of binary operations and algebraic structure forming a ring. • Discuss subgrings, integral domains, fields, ideals etc. • Understand the concepts and standard properties of ring homomorphisms and isomorphisms. • Understand the idea of linear transformation and its algebra along with the related concepts like rank, nullity, null space, range etc.
GE-4: Algebra	After going through this course, the students will be able to • Discuss various groups namely abelian, non-abelian groups, Zn groups under addition modulo n etc. • Understand the concepts of subgroups, cyclic subgroups, concept of a subgroup generated by a subset. •Discuss subgrings, integral domains, fields, ideals etc.
	Samastar V
C-11: Multivariate Calculus	Semester V After going through this course, the students will be able to • Understand the concepts from one variable calculus to function of several variables. • Demonstrate and use various techniques of double and triple integrals. • Demonstrate the relation among line, double and triple integrals. • Think critically and solve application of real-world problems involving double and triple integrals.
C-12: Group Theory II	After going through this course, the students will be able to • Solve contemporary problems by applying results from

	1
	preliminary concepts.
	• Discuss group automorphism, direct products and Sylow's
	theorems and its consequences.
	• Use the theories and ideas in communication theory,
	electrical engineering, computer science and cryptography.
DSE-I: Analytical	After going through this course, the students will be able
Geometry	to
	 Learn the techniques of sketching conics and conicoids. Classify quadratic equations representing lines, parabola, ellipse and hyperbola.
	 Solve various geometrical problems based on conics, sphere and conicoids analytically.
DSE- II: Mathematical	After going through this course, the students will be able to
Modeling	• Understand power series solutions of Differential equations.
	• Understand the idea of Laplace transformations and inverse
	Laplace transformations and their applications to solve differential equations.
	Demonstrate various simulation and linear programming
	models and their applications.
	models and their applications.
	Semester VI
C-13: Metric Spaces and	After going through this course, the students will be able to
Complex Analysis	• Describemetric spaces and various properties associated
	with it.
	• Demonstrate limits, continuity and singularities for
	functions of complex variable.
	• Describe complex number system, its differentiation and integration, Laurent series, etc.
C-14: Ring Theory and	After going through this course, the students will be able to
Linear Algebra II	• Solve real world problems by applying theorems proof/solution techniques.
	• Understand the concept and idea of dual spaces, dual basis,
	transpose of a linear transformation etc.
	• Discuss polynomial rings over commutative rings and the concepts of PID, ED, UFD etc.
	• Find the matrix associated with a linear transformation w.r.t
	given basis.
DSE- III: Linear	After going through this course, the students will be able to
Programming	• Discuss linear programming problem, its formation and algebraic solution.
	• Demonstrate various optimization techniques pertaining to
	linear programming.
	• Apply linear programming to problems arising out of real-

	• Use the concepts of game theory in real life situations.
DSE-IV: Mathematical	After going through this course, the students will beable to
Methods	• Discuss Fourier series and its various types which are very
	useful in physical science problems.
	• Solve Boundary value problems and Initial value problems
	in 1-D and 2-D cases, Laplace and Poisson equations in 2-D
	cases.